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Abstract—It is mysterious how the brain of a baby figures out
which part of a cluttered scene to attend to in the dynamic
world. On one hand, the various backgrounds, where object
may appear at different locations, make it difficult to find
the object of interest. On the other hand, with the numbers
of locations, types and variations in each type (e.g., rotation)
increasing, conventional model-based search schemes start to
break down. It is also unclear how a baby acquires concepts,
such as locations and types. Inspired by brain anatomy, the work
here is a computational synthesis from rich neurophysiological
and behavioral data. Our hypothesis is that motor signals pay
a critical role for the neurons in the brain to select the motor-
correlated pattern on the retina to respond. This work introduces
a new biologically inspired mechanism – synapse maintenance
in tight integration with Hebbian mechanisms to realize object
detection and recognition from cluttered natural video while the
motor manipulates (or correlate with) object of interest. Synapse
maintenance is meant to automatically decide which synapse
should be active during the firing of the post-synaptic neuron.
With the synapse maintenance, each neuron automatically wires
itself with the other parts of the brain-like network even when
a dynamic object of interest, specified by the supervised motor,
takes up only a small part of the retina in the presence of complex
dynamic backgrounds.

I. INTRODUCTION

In the recent years, much effort has been spent on the field
of artificial intelligence (AI) [1]. As the field of AI is inspired
by human intelligence, more and more artificial intelligent
models proposed are inspired by the brain to different degrees
[2]. General objects recognition and attention is one of the
important issues among the field of AI. And since human
vision systems can accomplish such tasks quickly, mimicking
the human vision systems is thought as one possible approach
to address this open yet important vision problem.

In the primate vision system, two major streams have been
identified. The ventral stream involving V1, V2, V4 and the
inferior temporal cortex is responsible for the cognition of
shape and color of objects. The dorsal stream involving V1,
V2, MT and the posterior parietal cortex takes charge of spatial
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and motion cognition. Several cortex-like network models have
been proposed. One Model is HMAX, introduced by Riesen-
huber and Poggio [3]. It is based on hierarchical feed forward
architecture similar to the organization of visual cortex. It
analyzes the input image via Gabor function and builds an
increasingly complex and invariant feature representation by
maximum pooling operation. HMAX mainly solves the visual
recognition problem which only simulates the ventral pathway
in primate vision system. The location information is lost [4].
Another model for general attention and recognition is Where-
What Networks (WWNs) introduced by Juyang Weng and
his co-workers. This is a biologically plausible developmental
model [5], [6] designed to integrate the object recognition and
attention namely, what and where information in the ventral
stream and dorsal stream respectively. It uses both feedforward
(bottom-up) and feedback (top-down) connections.

WWN has six versions. WWN-1 [7] can realize object
recognition in complex backgrounds performing in two dif-
ferent selective attention modes: the top-down position-based
mode finds a particular object given the location information;
the top-down object-based mode finds the location of the
object given the type. But only 5 locations were tested.
WWN-2 [8] can additionally perform in the mode of free-
viewing, realizing the visual attention and object recognition
without the type or location information and all the pixel
locations were tested. WWN-3 [9] can deal with multiple
objects in natural backgrounds using arbitrary foreground
object contours, not the square contours in WWN-1. WWN-
4 used and analyzed multiple internal areas [10]. WWN-5 is
capable of detecting and recognizing the objects with different
scale in the complex environments [11]. WWN-6 improves the
architecture and mechanisms of the network according to the
concept “skull closed” [12]. The pre-programmed “pulvinar ”,
which suppresses neurons far from the foreground location, is
not needed by WWN-6.

However, for the above versions of WWN, various back-
grounds are a serious problem which also exists in other ap-
proaches. In real applications, the object contours are arbitrary
while the receptive fields are usually regular (e.g., square) in
the image scanning. Thus, the leak of pixels of backgrounds
into the receptive field is hard to be avoided which may
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Fig. 1. The structure of WWN-6

produce distracter-like patterns.
We note that, during the competitive self-organization a-

mong a limited number of neurons who share a roughly the
same receptive field, the patterns from foreground objects
appear relatively more often than patterns of backgrounds.
Furthermore, neurons whose bottom-up weights match well a
foreground object often receive top-down attention boost from
a motor area to be more likely a winner. Although their default
receptive fields do not match the contour of a foreground
object perfectly, among the cases during which each neuron
fires, the standard deviation of pixels from a foreground object
should be smaller than that of pixels in backgrounds. In this
paper, we introduce a new biologically inspired mechanism
based on this statistics in nature — synapse maintenance —
for each neuron to find precise input fields based on statistics,
with handcrafting neither what feature each neuron detects nor
its precise input scope.

In the remainder of the paper, the overview of the latest
version of WWN is described in Section II. Concepts and
the detail algorithms in WWN are presented in Section III.
Experiments and results are provided in Section IV. Section V
gives the concluding remarks.

II. NETWORK OVERVIEW

In this section, the network structure and the overall scheme
of the network learning are described.

A. Network Structure

The network (WWN-6) is shown as Fig. 1 which consists
of three areas, X area (sensory ends/sensors), Y area (internal
brain inside the skull) and Z area (motor ends/effectors).
X acts as the retina, which perceives the inputs and sends
signals to internal brain Y . The motor area Z serves both
input and output. When the environment supervises Z, Z is
the input to the network. Otherwise, Z gives an output vector

to drive effectors which act on the real world. Z is used as
the hub for emergent concepts (e.g., goal, location and type),
abstraction (many forms mapped to one equivalent state),
and reasoning (as goal-dependant emergent action). In our
paradigm, two categories of concepts emerge in Z supervised
by the external teacher, the location of the foreground object
in the background and the type of this foreground object,
corresponding to Location Motor (LM) and Type Motor (TM).

Internal brain Y is like a limited-resource “bridge” con-
necting with other areas X and Z as its two “banks” through
2-way connections (ascending and descending). Y is inside the
closed skull, which is off limit to the teachers in the external
environments. Using a prescreening area for each source in
Y area, before integration, results in three laminar levels:
the ascending level (AL) that prescreenings the bottom-up
input, the descending level (DL) that prescreenings the top-
down input and paired level (PL) that combines the outputs
of AL and DL. In this model, there exist two pathways and
two connections. Dorsal pathway refers to the stream X 

Y 
 LM, while ventral pathway refers to X 
 Y 
 TM,
where 
 indicates that each of the two directions has separate
connections. That is to say, X provides bottom-up input to AL,
Z gives top-down input to DL, and then PL combines these
two inputs.

B. General Processing Flow of the Network

The general processing flow of the Network is as follows.
The dimension and representation of X and Y areas are hand
designed based on the sensors and effectors of the robotic
agent or biologically regulated by the genome. Y is skull-
closed inside the brain, not directly accessible by the external
world after the birth.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector r,
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where V contains all the synaptic weight vectors and G
stores all the neuronal ages.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
a) Every area A computes its area function f , de-

scribed below,

(r′, N ′) = f(b, t, N)

where r′ is the new response vector of A.
b) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′. If this replacement operation is not
applied, the network will not do learning anymore.

In the remaining discussion, x ∈ X is always supervised.
The z ∈ Z is supervised only when the teacher chooses.
Otherwise, z gives (predicts) effector output.

According to the above processing procedure (described in
details in section III), an artificial Developmental Program
(DP) is handcrafted by a human to short cut extremely ex-
pensive evolution. The DP is task-nonspecific as suggested for
the brain in [13], [14] (e.g., not concept-specific or problem-
specific).

III. CONCEPTS AND ALGORITHM DETAILS

A. Foreground and Background

“Foreground” here refers to the objects to be learned whose
contours are arbitrary and “background” refers to the other part
in the whole image. Considering the default receptive field of
a neuron in AL (square or octagon), we can find two kinds
of pixels: foreground pixels and background pixels. The pre-
response of the neuron is contributed from both the foreground
match and the background match. Although the contribution
from foreground pixels can provide a high pre-action value
when the foreground object is detected correctly for both type
and location, the contribution from background pixels usually
gives a somewhat random value. Thus, there is no guarantee
that the winner neuron always leads to the correct type in
TM and a precise location in LM. In order to deal with the
problem, a biologically-inspired mechanism, called synapse
maintenance, is introduced. This idea was tried for improving
the performance of WWN-3 network and achieved satisfying
results for the artificial synthesis images [15]. In this paper,
we improve this mechanism (see section III-E as below) and
apply it in WWN-6 for natural videos.

B. Inputs and Outputs of Internal Brain Y

As mentioned in section II-A, the inputs to Y consist of
two parts, one from X (bottom-up) and the other from Z
(top-down).

The neurons in AL have the local receptive fields from X
area (input image) shown as Fig. 2. Suppose the receptive
field is a × a, the neuron (i, j) in AL perceives the region
R(x, y) in the input image (i ≤ x ≤ (i + a − 1), j ≤ y ≤
(j+a−1)), where the coordinate (i, j) represents the location
of the neuron on the two-dimensional plane shown as Fig. 1
and similarly the coordinate (x, y) denotes the location of the
pixel in the input image.

   X
 area

 Y area (A
L) 

Fig. 2. The illustration of the receptive fields of neurons

Likewise, the neurons in DL have the global receptive fields
from Z area including TM and LM. It is important to note that
in Fig. 1, each Y neuron has a limited input field in X but a
global input field in Z.

Finally, PL combines the outputs of the above two levels,
AL and DL, and output the signals to motor area Z.

C. Pre-response of the Neurons

It is desirable that each brain area uses the same area
function f , which can develop area specific representation and
generate area specific responses. Each area A has a weight
vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree
of match between these two directions of v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between two unit
vectors v̇ and ṗ. This enables a match between two vectors of
different magnitudes. The pre-response value ranges in [−1, 1].

In other words, if regarding the synaptic weight vector as the
object feature stored in the neuron, the pre-response measures
the similarity between the input signal and the object feature.

D. Two Types of the Neurons

Considering that the learning rate in Hebbian learning
(described below) is 100% while the retention rate is 0%
when the neuron age is 1, we need to enable each neuron to
autonomously search in the input space {ṗ} but keep its age
(still at 1) until its pre-response value is sufficiently large to
indicate that current learned feature vector is meaningful (in-
stead of garbage-like). A garbage-like vector cannot converge
to a desirable target based on Hebbian learning.

Therefore, there exist two types of neurons in the Y area
(brain) according to their states, initial state neurons (ISN)
and learning state neurons (LSN). After the initialization of
the network, all the neurons are in the initial state. During
the training of the network, neurons may be transformed from
initial state into learning state, which is determined by the
pre-response of the neurons. In our network, a parameter ε1
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is defined. If the pre-response is over 1 − ε1, the neuron is
transformed into learning state, otherwise, the neuron keeps
the current state.

E. Synapse Maintenance

With the arbitrary foreground object contours in real envi-
ronments, the various backgrounds in the receptive fields of
Y neurons will influence the recognition results as described
in section III-B. An idea is naturally generated: if the network
can distinguish the foreground and the background or outline
the object contours automatically, the irrelevant components
(backgrounds) in the receptive fields of the Y neurons can be
removed to reduce the backgrounds interference in the process
of object recognition. The synapse maintenance is exactly
designed to realize such idea (i.e. removing the irrelevant
components, while minimizing removing those relevant com-
ponents) by calculating the standard deviation of each pixel in
different images.

Suppose that the input to a neuron is p = (p1, p2, ..., pd) and
its synaptic weight vector is v = (v1, v2, ..., vd). The standard
deviation of match between vi and pi is a measure of expected
uncertainty for each synapse i:

σi = E[|vi − pi|].

Mathematically, σi is the expected standard deviation of the
match by the synapse i.

Each neuron should dynamically determine which synapse
should keep active and which synapse should be retracted
depending the goodness of match.We would like to retract
synapse i if σi(n) is large. However, we do not want a fixed
threshold to do it because it may cause a synapse to be
retracted and extracted repeatedly. Therefore, we introduce a
smooth synaptogenic factor f(σi) defined based on the theory
of Mahanobis distance, which is a distance measure introduced
by P. C. Mahalanobis in 1936. It is based on correlations
between variables by which different patterns can be identified
and analyzed. It differs from Euclidean distance in that it
takes into account the correlations of the data set and is scale-
invariant. In other words, it is a multivariate effect size.

Here, Mahanobis distance between the normalized input
vector p and the synaptic vector v is used instead of the
Euclidian distance. So each component should be weighted
by the inverse of the standard deviation σi. We have derived
the following optimal time-dependent synaptogenic factor for
the i-th component of input p vector:

fi(t) =
1

η(σi(t) + ε)

where ε = δ/
√
12 and δ = 1/256 as an estimate of 8-

bit resolution of neuronal response in the range [0, 1] and to
avoid a too large fi(t), and η =

∑d
i=1(σi(t) + ε)−1 so that∑d

i=1 fi(t) ≡ 1.
Trimming can be considered the maintenance of spine-

synapse combination. We would like to define the trimming
of v = (v1, v2, ..., vd) to be

v′i ← fivi, (1)

i = 1, 2, ..., d. Similarly, trim the input vector p =
(p1, p2, ..., pd) where p = (b, t).

After trimmed, the pre-response of every neuron using inner
products is calculated as:

r(b, t,vb,vt) = α(
b′

‖b′‖
· v′b
‖v′b‖

) + β(
t′

‖t′‖
· v′t
‖v′t‖

)

where α > 0, β > 0 with α + β = 1. The default values
for α, β are α = β == 1/2. b′, t′, v′b and v′t are the
trimmed input vector and synaptic weight vector of each
neuron (trimmed as equation 1). In the current version, synapse
maintenance is only applied in the bottom-up connections
between X and Y .

F. Competition among the Neurons

Top-k competition takes place among the neurons in the
same level in Y area, imitating the lateral inhibition which
effectively suppresses the weakly matched neurons (measured
by the pre-responses). Top-k competition guarantees that d-
ifferent neurons detect different features. The response r′(t)
after top-k competition is

r′(t) =

{
r(t)(rq − rk+1)/(r1 − rk+1) if 1 ≤ q ≤ k
0 otherwise

where r1, rq and rk+1 denote the first, qth and (k + 1)th
neuron’s pre-response respectively after being sorted in de-
scending order. This means that only the top-k responding
neurons can fire while all the other neurons are set to zero.

G. Hebbian-like Learning

Hebbian-like learning of our WWN-6 network includes both
synapse weight vector update and standard deviation vector
update in synapse maintenance.

The update of the synapse weight vector is described as:

vj(n) = w1(n)vj(n− 1) + w2(n)r
′(t)pj(t)

where r′(t) is the response of the neuron after top-k compe-
tition, vj(n) is the synapse weight vector of the neuron with
age of n and pj(t) is the input of the neuron.

The update of the standard deviation in synapse maintenance
is described as:

σi(n) =

{
1/
√
12 if n ≤ n0

w1(n)σi(n− 1) + w2(n)|vi − pi| otherwise

where the latency for the synapse maintenance n0 = 4 is set
to wait synapse weights (the first order statistics) to get good
estimates first through the first n0 updates before the standard
deviation σi (the second order statistics) can have reasonable
observations. The default estimate for σi, 1/

√
12, is needed at

early ages.
In the above two equations, w1 and w2 are the two pa-

rameters representing retention rate and learning rate with
w1 +w2 ≡ 1. These two parameters are defined as following:

w1(n) = 1− w2(n), w2(n) =
1 + u(n)

n
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Fig. 3. 12 objects to be learned in the experiment

where u(n) is the amnesic function:

u(n) =

 0 if n ≤ t1
c(n− t1)/(t2 − t1) if t1 < n ≤ t2
c+ (n− t2)/r if t2 < n

where n is the firing age of the neuron, t1 = 20, t2 = 200, c =
2, r = 10000 [16].

Only the firing neurons (firing neurons are in learning state
definitely) and all the neurons in initial state will implement
Hebbian-like learning, updating the synaptic weights accord-
ing to the above formulas. In Y area, if the neuron in learning
state is one of the top-k winners and its pre-response is over
1 − ε2, the neuron will be fired and implement Hebbian-like
learning. The firing age of the neurons in learning state and
initial state is updates as

n(t+ 1) =

{
n(t) if the neuron is ISN
n(t) + 1 if the neuron is top-k LSN .

To a neuron, the lower the firing age the higher the learning
rate. That is to say, ISN is more capable to learn new concepts
than LSN. If the neurons are regarded as resources, ISNs are
the idle resources while LSNs are the developed resources.

H. How each Y neuron matches its two input fields

All Y neurons compete for firing via the above top-k
mechanisms. The initial weight vector of each Y neuron is
randomly self-assigned, as discussed below. We would like to
have all Y neurons to find good vectors in the input space {ṗ}.
A neuron will fire and update only when its match between
v̇ and ṗ is among the top, which means that the match for
the bottom-up part v̇b · ḃ and the match for the top-down part
ḃt · ṫ must be both top. Such top matches must be sufficiently
often in order for the neuron to mature.

This gives an interesting but extremely important property
for attention — relatively very few Y neurons will learn back-
ground, since a background patch does not highly correlated
with an action in Z.

Whether a sensory feature belongs to a foreground or
background is defined by whether there is an action
that often co-occurs with it.

IV. EXPERIMENTS AND RESULTS

A. Sample Frames Preparation from Natural Videos

In our experiment, 12 objects shown in Fig.3 have been
learned. The raw video clips of each object to be learned
were completely taken in the real natural environments. During
video capture, the object held by the teacher’s hand was
required to move slowly so that the agent could pay attention
to the object. Fig. 4 shows the example frames extracted from
a continuous video clip as an illustration which needs to be
preprocessed before input to the network. The pre-processing
described below is automatically or semi-automatically via
handcrafted programs.

1) Resize the image extracted from the video clip to nor-
malize the size of foreground object in different frames
as big as the receptive field size of each Y neuron.

2) In our experiments, the teacher provided the correct
information of the samples, including the type and the
location of the object in any natural backgrounds. Thus,
such information needs to be recorded as the standard
of test and the supervision in Z area.

B. Verifying a Network

The training set consisted of even frames extracted from
12 different video clips, with one type of foreground object
per video. We trained every possible object to be learned
at every possible location (pixel-specific) for each epoch,
and we trained over many epochs. So, there are 12 classes
× 2 (iterations) training instances × 23 × 23 locations =
12696 different training foreground configurations. The test
set consisted of odd frames. After every epoch, we tested
every possible foreground at every possible location. There are
12× 23× 23 = 6348 different test foreground configurations.

Considering both the foreground and background are differ-
ent in every video frame, the network is nearly 100% short of
resource to memorize all the foreground configurations. For
example, if one video contains 500 frames, as there are only
6 neurons at each location, but 500 training foreground con-
figurations, the resource shortage is (500− 6)/500 = 98.8%.
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Fig. 4. Frames extracted from a continuous video clip and used in the training and testing of the network

C. Network Performances

To see how the synapse maintenance influences the network
performances, we tested the network with/without synapse
maintenance in free-viewing mode (no top-down attention).
As shown in Fig. 5, the synapse maintenance improved the
performances of the network including recognition rate and
localization precision, though the performances became a little
worse in the first epoch. After 5 epochs of training, the
network with synapse maintenance reached a correct disjoint
classification rate nearly 100%.

In order to investigate the detailed effects of synapse main-
tenance mechanism, the standard deviation (σi) and synapto-
genic factor (fi) after 10 epochs are visualized as Fig. 6. The
removal of the background pixels is not as effective as the
results in artificial synthesis images. In our experiment, the
input images for the network training were extracted from the
natural video clips, which indicates that the variation of the
foreground object is also considerable (for example, affected
by illumination or a little different viewangle) compared to
that of backgrounds. Thus, there does not exist significant
difference between the standard deviation of the pixels in
foreground and background.

(a)  Neuron “bear” in TM (b)  Neuron “camel” in TM 

(c)  Neuron (22,4) in LM (d)  Neuron (2,16) in LM 

Fig. 7. Bottom-up weights visualization of two neurons in TM and
LM. (row, column) represents the neuron position. Here only the
weights of Y neurons in first depth are visualized. The size of TM
(give the object type) is 12× 1 and the size of LM (give the object
location) is 23× 23.
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Fig. 5. Network performance variation within 10 epochs with/without synapse maintenance (SM).

(a) Standard deviation (b) Synaptogenic factor

Fig. 6. Visualization of the variables in synapse maintenance. The black patch refers to the neurons which has not done synapse maintenance.

Furthermore, the synaptic weights of neurons in Y area and
Z area (TM and LM) are visualized in Fig. 8 and Fig. 7 to
study the details of WWN-6 learning effect from the natural
video frames. It shows that any Y neuron in any depth can
only detect a specific object (“what”) feature (shown as Fig. 8
(b)) in a specific position (“where” shown as Fig. 8 (c)) except
it is in the initial state whose synaptic weights are visualized
as black square patch in Fig. 8.

The bottom-up weights of Z neurons shown in Fig. 7
represent the connection strength from Y to Z, normalized
to the range from 0 (black) to 255 (white). The distribution of
the nonzero weights, shown in Fig. 7 (a) and (b), should be
scattered as shown since a particular object type (e.g., bear)
appeared at all the possible image locations detected by Y

neurons (at depth 1) each tuned to that type and a location.
Likewise, the distribution of the nonzero weights, shown in
Fig. 7 (c) and (d), should be localized as shown since objects
at a particular location (e.g., (row, column) = (22, 4)) appeared
in the vicinity of a single location detected by Y neurons (at
depth 1) tuned to an object type and that location. The bottom-
up weights from other Y depths to the Z area are similar.

V. CONCLUSION AND FUTURE WORK

In this paper, a new mechanism for the biologically-inspired
developmental network WWN-6, synapse maintenance has
been proposed to automatically determine and adapt the recep-
tive field of a neuron. The default shape of the adaptive field
does not necessarily conform to the actual contour of an object,
since the object may have different variations in its different
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Fig. 8. Weight Visualization of the neurons in one depth (23×23) in Y area (6 depths), which have three types: bottom-up weights (connected
from X area), top-down weights (connected from TM) and top-down weights (connected from LM). For each neuron, the dimensions of the
above weights are 22× 22, 12× 1 and 23× 23 respectively. Block color in (b) represents the object type, and all the 12 objects are mapped
into a color bar ranged from 0 to 1. The black square patches in (a), (b) and (c) correspond to the initial state neuron.

parts. The adaptive receptive field intends to find a subset of
synapses that provide a better majority of matches. Synapse
maintenance achieved impressive results for natural videos,
as shown in experiments, under a large resource shortage
nearly 100%. This indicates that synapse maintenance has
great practical potential in real application.

An ongoing work is to handle different scales of the same
object. Other variations are also possible for the WWN to
deal with in principle, but future experiments are needed. We
believe that synapse maintenance is a necessary mechanism for
the brain to learn and to achieve a satisfactory performance in
the presence of natural backgrounds.
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